行测数学运算技巧:使用文氏图来解决容斥原理问题
行测数学运算技巧:使用文氏图来解决容斥原理问题
文氏图法(Venn diagrams):用于描述集合间的关系及其运算,其特点是直观、形象、信息量大且富有启发性。一般用矩形表示全集U,用圆表示U的子集A,B,C等等。文氏图又称韦恩图,能够将逻辑关系可视化的示意图。从文氏图可清晰地看出集合间的逻辑关系、重复计算的次数,最适合描述3个集合的情况。
相关推荐:
【例题】某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。则三项全部合格的建筑防水卷材产品有多少种?
A.34 B.35

C.36 D.37
解析:画出文氏图。低温柔度、可溶物含量、接缝剪切性能不合格的一共有8+10+9=27种。在上述计算中,两项不合格的产品(图中灰色的部分)被重复计算了1次,三项不合格的产品(黑色的部分)被重复计算了2次。应用容斥原理,不合格的产品共有27-1×7-2×1=18种,合格的有52-18=34种。
使用文氏图来解决容斥原理问题要注意以下两点:
1、文氏图表示的都是相应的集合,而本篇文稿所提到的要解决的问题则是计算集合内事物个数的问题。
2、一般情况下,较为容易的采用容斥原理公式来计算,较为复杂则需借助文氏图。